Post

[해석개론] Lec 01 - Preliminaries

[해석개론] Lec 01 - Preliminaries

hw

Sets and Functions

  • Definition.

    Let $A, B$ be sets

    (1) $A \subseteq B \ \text{iff} \ x \in A \Rightarrow x \in B$

    (2)

\[\begin{aligned} A = B \ &\text{iff} \ A \subseteq B, B\subseteq A \\ &\text{iff}\ x\in A \Leftrightarrow x \in B \end{aligned}\]
  • Notation.

    $\mathbb{N} = \lbrace0, 1, 2, \cdots \rbrace$

    $\mathbb{Z}= \lbrace\cdots , -2, -1, 0, 1, 2, \cdots \rbrace$

    $\mathbb{Q} = {m/n : m, n\in \Z, n\neq 0 }$

    $\mathbb{R} = {\text{real numbers} }$

    $\mathbb{C} = {x+yi : x,y\in \R }$

  • Definition

    (1) $A\cup B = {x:x\in A \ \text{or} \ x\in B } $

    (2) $A\cap B = {x:x\in A \ \text{and} \ x\in B }$

    (3) $A \ \backslash \ B = {x: x\in A \ \text{and} \ x\notin B } $

  • Definition

    Let ${A_n }_{n=1}^\infty$ be a family of sets

    $\displaystyle \bigcup_{n=1}^\infty A_n = { x : x\in A_n \ \text{for some } n\geq 1 }$

    $\displaystyle \bigcap_{n=1}^\infty A_n = {x : x\in A_n \text{ for all } n\geq 1 }$

  • Index and index set

    ${A_i }_{i \in I}$ : family of sets

    eg) $\displaystyle \bigcap_{i\in I} A_i, \bigcup_{i\in I} A_i$

  • Product

    $A \times B = {(a,b) : a\in A, b\in B }$

    if $A, B$ : finite sets

    → $\vert A \times B \vert = \vert A \vert \vert B \vert$

  • Definition

    Let $A, B$ be sets.

    A function from $A$ to $B$ is a triple $(A, B, gra(f)) = f:A \rightarrow B$

    where $gra(f) \subseteq A \times B$ satisfies the following property :

    For each $a \in A$, there exists a unique $b \in B$ s.t. $(a,b) \in gra(f)$

    We call A the domain of $f$ and $B$ the codomain of $f$

    If $(a,b) \in gra(f)$, we write $b=f(a)$ or $a \mapsto b$

    We call $b$ the value of $f$ at $a$, or the image of $a$ under $f$

  • Definition

    Let $f : A \rightarrow B$ be a function

    (1) For $E \subseteq A$, the (direct) image of $E$ under $f$ is $f(E) = {f(x) : x\in E }$

    (2) For $H \subseteq B$, the inverse image of $E$ under $f$ is $f^{-1}(H) = {x\in A : f(x)\in H}$

  • Ex 1) $f : \R \rightarrow \R : x \mapsto x^2$

    $E=[0, 2] \Rightarrow f(E) = [0, 4]$

    $G=[0, 4] \Rightarrow f^{-1}(G)=[-2, 2]$

    cf ) $f^{-1}(f(E))\neq E$

  • Definition

    Let $f : A \rightarrow B $ be a function.

    (1) $f$ is called injective (=one-to-one, 단사함수, 일대일함수) if

    $x_1 \neq x_2 (x_1, x_2 \in A) \Rightarrow f(x_1)\neq f(x_2)$

    (2) $f$ is called surjective (=onto, 전사함수, 위로의 함수) if $f(A) = B$

    (3) $f$ is called bijective (전단사함수, 일대일대응) if it is both injective and surjective

  • Important!

    Let $f : X\rightarrow Y$ be a function

    (1) $A, B \subset X$

    $f(A\cup B) = f(A) \cup f(B)$

    proof )

\[\begin{aligned}x\in f(A\cup B) &\Leftrightarrow x=f(y) \text{ for some } y\in A\cup B \\ &\Leftrightarrow x=f(y) \text{ for some } y\in A \text{ or } y\in B \\ &\Leftrightarrow x\in f(A) \text{ or } x\in f(B)\\ &\Leftrightarrow x\in f(A)\cup f(B) \end{aligned}\]

$f(A\cap B) \subset f(A) \cap f(B) \ (*)$

1
proof )
\[\begin{aligned} x\in f(A\cap B) & \Leftrightarrow x=f(y) \text{ for some } y\in A\cap B \\ & \Leftrightarrow x= f(y), y\in A, y\in B \text{ for some } y \\ &\Rightarrow x\in f(A), x\in f(B) \\ &\Leftrightarrow x\in f(A)\cap f(B)\end{aligned}\]

 

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
eg) $f(x)=x^2 : \R \rightarrow \R$


$A=[0, 1]$, $B = [-1,0]$, then $A\cap B = \{0\}$, 


$f(A\cap B) = \{0\} \in f(A)\cap f(B) =[0,1]$


 


(2) $A, B \subset Y$


	$f^{-1} (A\cup B) = f^{-1} (A) \cup f^{-1} (B)$


	$f^{-1} (A\cap B) = f^{-1} (A) \cap f^{-1} (B)$
  • Ex 2)

    $f: X\rightarrow Y$

    (1) $f : \text{ injective } A\subseteq X$

    $\text{prove } f^{-1}(f(A)) = A$

  • $A\subseteq f^{-1}(f(A))$

    $x\in A\Rightarrow f(x)\in f(A) \Leftrightarrow x\in f^{-1}(f(A))$

  • $f^{-1}(f(A)) \subseteq A$

\[\begin{aligned}x\in f^{-1}(f(A)) &\Rightarrow f(x) \in f(A)\\ &\Rightarrow f(x) = f(y), y\in A \text{ for some } y \\ &\Rightarrow x=y, y\in A \text{ for some } y \\ & \Rightarrow x\in A\end{aligned}\]

Injective property used at the third line

(2) $f : \text{ surjective } B\subseteq Y$ $\text{prove } f(f^{-1}(B))=B$

  • $f(f^{-1}(B)) \sub B$
\[\begin{aligned} x &\in f(f^{-1}(B) \\ &\Rightarrow x=f(y), y\in f^{-1}(B) \text{ for some } y \\ &\Rightarrow x=f(y), f(y)\in B \text{ for some } y \\ &\Rightarrow x\in B \end{aligned}\]
  • $B \sub f(f^{-1}(B))$

    Take $x\in B$. Since $f$ is surjective, $x=f(a)$ for some $a\in X$ By definition, $a\in f^{-1}(B)$ $\therefore \ x=f(a)\in f(f^{-1}(B))$

  • Ex 3) $f : X \rightarrow Y, g: Y\rightarrow Z$

    (1) If $f, g$ are injective, then so is $g \circ f$

    (2) If $f, g$ are surjective, then so is $g \circ f$

    (3) If $g \circ f$ is injective, then so is $f$

\[\begin{aligned} \text{if } f(x_1) &= f(x_2) \space (x_1,x_2 \in X) \\ g \circ f(x_1) &= g \circ f(x_2) \\ x_1&=x_2 \end{aligned}\]

.

1
2
3
4
5
6
7
8
9
10
(4) If $g \circ f$ is surjective, then so is $g$


Take $z \in Z$. Then we have $x \in X$ s.t. $z=(g\circ f) (x)$


Now $z=g(f(x))$, $f(x) \in Y$


→ Therefore, if $g\circ f$ is bijective, $g$ : surjective, $f$ : injective
  • Ex 4) f : $X \rightarrow Y, g : Y \rightarrow Z, A\sube Z$

    $(g\circ f)^{-1} (A) = f^{-1}(g^{-1}(A))$

\[\begin{aligned} x\in (g\circ f)^{-1}(A) &\Leftrightarrow (g\circ f)(x) \in A \\ &\Leftrightarrow g(f(x))\in A \\ &\Leftrightarrow f(x)\in g^{-1}(A) \\ &\Leftrightarrow x\in f^{-1}(g^{-1}(A)) \end{aligned}\]

Mathematical Induction

  • Axiom (Well-Ordering Property of $\N$) Every nonempty subset of $\N$ has a least element
  • Thm. (Principle of Mathemital Induction)

    Let $S \sube \N$

    Supp.

    1
    2
    3
    4
    
      (i) $0 \in S$
    
    
      (ii) $\forall k \in \N, k\in S \Rightarrow k+1\in S$
    

    Then $S=\N$

    (pf) Let $A = \N \smallsetminus S$. Supp. $A\neq \emptyset$

    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    
      Then by Well-Ordering Principle, $A$ has the minimum element $m$.
    
    
      Observe : $m \neq 0$
    
    
      Now $m-1\in \N \smallsetminus A$ by minimality of $m$
    
    
      By (ii), $m\in S \ (*)$
    

    Cor. Let $p(n)$ be a statement about $n\in \N$

    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    14
    15
    16
    17
    18
    19
    20
    21
    22
    
      Supp. 
    
    
          (i) $p(0)$ is true.
    
    
          (ii) $\forall k \in \N$.  $p(k) \Rightarrow p(k+1)$
    
    
      Then $p(n)$ is true for all $n\in \N$
    
    
      (pf) $S = \{n\in \N : p(n) \} \sube \N$,
    
    
          (i) $0 \in S$
    
    
          (ii) $\forall k \in \N, k\in S \Rightarrow p(k) \Rightarrow p(k+1) \Rightarrow k+1\in S$
    
    
          By Thm above, $S=\N$. Hence $p(n)$ is true for all $n\in\N$
    
    • Thm. (Principle of Strong Induction)

      Let $S \sube \N$

      Supp.

      (i) $0 \in S$

      (ii) $\forall k \in \N$. ${0, \cdots, k } \sube S \Rightarrow k+1 \in S$

      Then $S=\N$

      (pf) Let $A = \N \smallsetminus S$, Supp $A\neq \emptyset$

      1
      2
      3
      4
      5
      6
      7
      8
      9
      10
      
        By Well-Ordering Property, $A$ has the minimum element $m$.
      
      
        Then $m\neq 0$ (since $0\in S$).
      
      
        Now. $0, \cdots, m-1 \in \N \smallsetminus A = S$ by minimality.
      
      
        By (ii), $m\in S \ (*)$ .
      

    Cor. Let $p(n)$ be a statement about $n\in\N$

    1
    2
    3
    4
    5
    6
    7
    
      Supp. (i) $p(0)$ is true.
    
    
               (ii) $\forall k \in \N$. $(p(0)\land p(1) \land \cdots \land p(k) ) \Rightarrow  p(k+1)$
    
    
      Then $p(n)$ is true for all $n\in \N$
    
  • Ex. Every $n\in \Z\geq 2$ has a prime divisor.

    (1) $2$ has a prime diviser $2$. (base case)

    (2) Take $n\in\Z>2$, Supp. the statement holds for all positive integers $\geq 2$ less than $n$.

    1
    
      (Induction Hypothesis)
    

    Supp. $n$ is prime. Then $n$ has a prime divisor $n$.

    Supp. not. Then $n=ab$ for some $a\in \Z>1, b\in Z>1$.

    Now, $1<a<n$ so by inductive hypothesis. a has a prime divisor.

    Hence, $n$ has a prime divisor.

Basic Logic

  1. Propositional Logic (명제 논리)
    • A propositional variable is a variable that is either true or false.
    • $\lnot p, \sim p$ : negation
    • $p \land q$ : conjunction
    • $p \lor q$ : disjuction
    • $p \rightarrow q$ : implication
    • $p \leftrightarrow q$ : bicondition

cf ) $p \rightarrow q$ : False only of p is true, q is false.

First-Order Logic

p(x) : 명제함수.

  • quantifier (한정사)

    $\forall x, p(x)$ → $\forall x$ : universal quantifier

    $\exists x, p(x)$ → $\exists x$ : existential quantifier

  • Ex 1) prove $\sim (p\land q) \equiv q \rightarrow \sim p$

    By truth table,

    PQ$\sim (p\land q)$$\sim p$$q \rightarrow \sim p$
    TTFFF
    TFTFT
    FTTTT
    FFTTT
  • Ex 2) $\forall x \exists y \not\equiv \exists y \forall x$

\[\forall x \forall y \ p(x,y) = \forall y \forall x \ p(x,y) \\\forall x \exists y \ p(x,y) \not= \forall x \exists y \ p(x,y) \\ \exists x \forall y \ p(x,y) \not= \exists y \forall x \ p(x,y) \\ \exists x \exists y \ p(x,y) = \exists y \exists x \ p(x,y)\]

→ Uniform / contiunous 차이 발생이유, $\exists y$가 $x$의 의존 여부

  • Negation rule
\[\sim ( \forall x, p(x)) = \exists x, \sim p(x) \\ \sim (\exists x, p(x)) = \forall x, \sim p(x) \\ \sim (\forall x \exists y, p(x,y)) = \exists x \forall y \sim p(x,y)\]
This post is licensed under CC BY 4.0 by the author.