[해석개론] Lec 01 - Preliminaries
hw
Sets and Functions
Definition.
Let $A, B$ be sets
(1) $A \subseteq B \ \text{iff} \ x \in A \Rightarrow x \in B$
(2)
Notation.
$\mathbb{N} = \lbrace0, 1, 2, \cdots \rbrace$
$\mathbb{Z}= \lbrace\cdots , -2, -1, 0, 1, 2, \cdots \rbrace$
$\mathbb{Q} = {m/n : m, n\in \Z, n\neq 0 }$
$\mathbb{R} = {\text{real numbers} }$
$\mathbb{C} = {x+yi : x,y\in \R }$
Definition
(1) $A\cup B = {x:x\in A \ \text{or} \ x\in B } $
(2) $A\cap B = {x:x\in A \ \text{and} \ x\in B }$
(3) $A \ \backslash \ B = {x: x\in A \ \text{and} \ x\notin B } $
Definition
Let ${A_n }_{n=1}^\infty$ be a family of sets
$\displaystyle \bigcup_{n=1}^\infty A_n = { x : x\in A_n \ \text{for some } n\geq 1 }$
$\displaystyle \bigcap_{n=1}^\infty A_n = {x : x\in A_n \text{ for all } n\geq 1 }$
Index and index set
${A_i }_{i \in I}$ : family of sets
eg) $\displaystyle \bigcap_{i\in I} A_i, \bigcup_{i\in I} A_i$
Product
$A \times B = {(a,b) : a\in A, b\in B }$
if $A, B$ : finite sets
→ $\vert A \times B \vert = \vert A \vert \vert B \vert$
Definition
Let $A, B$ be sets.
A function from $A$ to $B$ is a triple $(A, B, gra(f)) = f:A \rightarrow B$
where $gra(f) \subseteq A \times B$ satisfies the following property :
For each $a \in A$, there exists a unique $b \in B$ s.t. $(a,b) \in gra(f)$
We call A the domain of $f$ and $B$ the codomain of $f$
If $(a,b) \in gra(f)$, we write $b=f(a)$ or $a \mapsto b$
We call $b$ the value of $f$ at $a$, or the image of $a$ under $f$
Definition
Let $f : A \rightarrow B$ be a function
(1) For $E \subseteq A$, the (direct) image of $E$ under $f$ is $f(E) = {f(x) : x\in E }$
(2) For $H \subseteq B$, the inverse image of $E$ under $f$ is $f^{-1}(H) = {x\in A : f(x)\in H}$
Ex 1) $f : \R \rightarrow \R : x \mapsto x^2$
$E=[0, 2] \Rightarrow f(E) = [0, 4]$
$G=[0, 4] \Rightarrow f^{-1}(G)=[-2, 2]$
cf ) $f^{-1}(f(E))\neq E$
Definition
Let $f : A \rightarrow B $ be a function.
(1) $f$ is called injective (=one-to-one, 단사함수, 일대일함수) if
$x_1 \neq x_2 (x_1, x_2 \in A) \Rightarrow f(x_1)\neq f(x_2)$
(2) $f$ is called surjective (=onto, 전사함수, 위로의 함수) if $f(A) = B$
(3) $f$ is called bijective (전단사함수, 일대일대응) if it is both injective and surjective
Important!
Let $f : X\rightarrow Y$ be a function
(1) $A, B \subset X$
$f(A\cup B) = f(A) \cup f(B)$
proof )
$f(A\cap B) \subset f(A) \cap f(B) \ (*)$
1
proof )
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
eg) $f(x)=x^2 : \R \rightarrow \R$
$A=[0, 1]$, $B = [-1,0]$, then $A\cap B = \{0\}$,
$f(A\cap B) = \{0\} \in f(A)\cap f(B) =[0,1]$
(2) $A, B \subset Y$
$f^{-1} (A\cup B) = f^{-1} (A) \cup f^{-1} (B)$
$f^{-1} (A\cap B) = f^{-1} (A) \cap f^{-1} (B)$
Ex 2)
$f: X\rightarrow Y$
(1) $f : \text{ injective } A\subseteq X$
$\text{prove } f^{-1}(f(A)) = A$
$A\subseteq f^{-1}(f(A))$
$x\in A\Rightarrow f(x)\in f(A) \Leftrightarrow x\in f^{-1}(f(A))$
$f^{-1}(f(A)) \subseteq A$
Injective property used at the third line
(2) $f : \text{ surjective } B\subseteq Y$ $\text{prove } f(f^{-1}(B))=B$
- $f(f^{-1}(B)) \sub B$
$B \sub f(f^{-1}(B))$
Take $x\in B$. Since $f$ is surjective, $x=f(a)$ for some $a\in X$ By definition, $a\in f^{-1}(B)$ $\therefore \ x=f(a)\in f(f^{-1}(B))$
Ex 3) $f : X \rightarrow Y, g: Y\rightarrow Z$
(1) If $f, g$ are injective, then so is $g \circ f$
(2) If $f, g$ are surjective, then so is $g \circ f$
(3) If $g \circ f$ is injective, then so is $f$
.
1
2
3
4
5
6
7
8
9
10
(4) If $g \circ f$ is surjective, then so is $g$
Take $z \in Z$. Then we have $x \in X$ s.t. $z=(g\circ f) (x)$
Now $z=g(f(x))$, $f(x) \in Y$
→ Therefore, if $g\circ f$ is bijective, $g$ : surjective, $f$ : injective
Ex 4) f : $X \rightarrow Y, g : Y \rightarrow Z, A\sube Z$
$(g\circ f)^{-1} (A) = f^{-1}(g^{-1}(A))$
Mathematical Induction
- Axiom (Well-Ordering Property of $\N$) Every nonempty subset of $\N$ has a least element
Thm. (Principle of Mathemital Induction)
Let $S \sube \N$
Supp.
1 2 3 4
(i) $0 \in S$ (ii) $\forall k \in \N, k\in S \Rightarrow k+1\in S$
Then $S=\N$
(pf) Let $A = \N \smallsetminus S$. Supp. $A\neq \emptyset$
1 2 3 4 5 6 7 8 9 10
Then by Well-Ordering Principle, $A$ has the minimum element $m$. Observe : $m \neq 0$ Now $m-1\in \N \smallsetminus A$ by minimality of $m$ By (ii), $m\in S \ (*)$
Cor. Let $p(n)$ be a statement about $n\in \N$
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
Supp. (i) $p(0)$ is true. (ii) $\forall k \in \N$. $p(k) \Rightarrow p(k+1)$ Then $p(n)$ is true for all $n\in \N$ (pf) $S = \{n\in \N : p(n) \} \sube \N$, (i) $0 \in S$ (ii) $\forall k \in \N, k\in S \Rightarrow p(k) \Rightarrow p(k+1) \Rightarrow k+1\in S$ By Thm above, $S=\N$. Hence $p(n)$ is true for all $n\in\N$
Thm. (Principle of Strong Induction)
Let $S \sube \N$
Supp.
(i) $0 \in S$
(ii) $\forall k \in \N$. ${0, \cdots, k } \sube S \Rightarrow k+1 \in S$
Then $S=\N$
(pf) Let $A = \N \smallsetminus S$, Supp $A\neq \emptyset$
1 2 3 4 5 6 7 8 9 10
By Well-Ordering Property, $A$ has the minimum element $m$. Then $m\neq 0$ (since $0\in S$). Now. $0, \cdots, m-1 \in \N \smallsetminus A = S$ by minimality. By (ii), $m\in S \ (*)$ .
Cor. Let $p(n)$ be a statement about $n\in\N$
1 2 3 4 5 6 7
Supp. (i) $p(0)$ is true. (ii) $\forall k \in \N$. $(p(0)\land p(1) \land \cdots \land p(k) ) \Rightarrow p(k+1)$ Then $p(n)$ is true for all $n\in \N$
Ex. Every $n\in \Z\geq 2$ has a prime divisor.
(1) $2$ has a prime diviser $2$. (base case)
(2) Take $n\in\Z>2$, Supp. the statement holds for all positive integers $\geq 2$ less than $n$.
1
(Induction Hypothesis)
Supp. $n$ is prime. Then $n$ has a prime divisor $n$.
Supp. not. Then $n=ab$ for some $a\in \Z>1, b\in Z>1$.
Now, $1<a<n$ so by inductive hypothesis. a has a prime divisor.
Hence, $n$ has a prime divisor.
Basic Logic
- Propositional Logic (명제 논리)
- A propositional variable is a variable that is either true or false.
- $\lnot p, \sim p$ : negation
- $p \land q$ : conjunction
- $p \lor q$ : disjuction
- $p \rightarrow q$ : implication
- $p \leftrightarrow q$ : bicondition
cf ) $p \rightarrow q$ : False only of p is true, q is false.
First-Order Logic
p(x) : 명제함수.
quantifier (한정사)
$\forall x, p(x)$ → $\forall x$ : universal quantifier
$\exists x, p(x)$ → $\exists x$ : existential quantifier
Ex 1) prove $\sim (p\land q) \equiv q \rightarrow \sim p$
By truth table,
P Q $\sim (p\land q)$ $\sim p$ $q \rightarrow \sim p$ T T F F F T F T F T F T T T T F F T T T Ex 2) $\forall x \exists y \not\equiv \exists y \forall x$
→ Uniform / contiunous 차이 발생이유, $\exists y$가 $x$의 의존 여부
- Negation rule